
beginner

beginner ii

COLLABORATORS

TITLE :

beginner

ACTION NAME DATE SIGNATURE

WRITTEN BY January 2, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

beginner iii

Contents

1 beginner 1

1.1 Procedures and Functions . 1

1.2 Functions . 1

1.3 One-Line Functions . 3

1.4 Default Arguments . 3

1.5 Multiple Return Values . 5

beginner 1 / 6

Chapter 1

beginner

1.1 Procedures and Functions

Procedures and Functions

A function is a procedure which returns a value. This value can be
formed from any expression so it may depend on the parameters with which
the function was called. For instance, the addition operator + can be
thought of as a function which returns the sum of its two parameters.

Functions

One-Line Functions

Default Arguments

Multiple Return Values

1.2 Functions

Functions
=========

We can define our own addition function, add, in a very similar way to
the definition of a procedure.

PROC main()
DEF sum
sum:=12+79
WriteF(’Using +, sum is \d\n’, sum)
sum:=add(12,79)
WriteF(’Using add, sum is \d\n’, sum)

ENDPROC

beginner 2 / 6

PROC add(x, y)
DEF s
s:=x+y

ENDPROC s

This should generate the following output:

Using +, sum is 91
Using add, sum is 91

In the procedure add the value s is returned using the ENDPROC label. The
value returned from add can be used in expressions, just like any other
value. You do this by writing the procedure call where you want the value
to be. In the above example we wanted the value to be assigned to sum so
we wrote the call to add on the right-hand side of the assignment. Notice
the similarities between the uses of + and add. In general, add(a,b) can
be used in exactly the same places that a+b can (more precisely, it can be
used anywhere (a+b) can be used).

The RETURN keyword can also be used to return values from a procedure.
If the ENDPROC method is used then the value is returned when the
procedure reaches the end of its code. However, if the RETURN method is
used the value is returned immediately at that point and no more of the
procedure’s code is executed. Here’s the same example using RETURN:

PROC add(x, y)
DEF s
s:=x+y
RETURN s

ENDPROC

The only difference is that you can write RETURN anywhere in the code part
of a procedure and it finishes the execution of the procedure at that
point (rather than execution finishing when it reaches the end of the
code). In fact, you can use RETURN in the main procedure to prematurely
finish the execution of a program.

Here’s a slightly more complicated use of RETURN:

PROC limitedadd(x,y)
IF x>10000

RETURN 10000
ELSEIF x<-10000

RETURN -10000
ELSE

RETURN x+y
ENDIF
/* The following code is redundant */
x:=1
IF x=1 THEN RETURN 9999 ELSE RETURN -9999

ENDPROC

This function checks to see if x is greater than 10,000 or less than
-10,000, and if it is a limited value is returned (which is generally not
the correct sum!). If x is between -10,000 and 10,000 the correct answer
is returned. The lines after the first IF block will never get executed
because execution will have finished at one of the RETURN lines. Those

beginner 3 / 6

lines are therefore just a waste of compiler time and can safely be
omitted (as the comment suggests).

If no value is given with the ENDPROC or RETURN keyword then zero is
returned. Therefore, all procedures are actually functions (and the terms
procedure and function will tend to be used interchangeably). So, what
happens to the value when you write a procedure call on a line by itself,
not in an expression? Well, as we will see, the value is simply discarded
(see Turning an Expression into a Statement). This is what happened in
the previous examples when we called the procedures fred and WriteF.

1.3 One-Line Functions

One-Line Functions
==================

Just as the IF block and FOR loop have horizontal, single line forms,
so does a procedure definition. The general form is:

PROC name (arg1, arg2, ...) IS expression

Alternatively, the RETURN keyword can be used:

PROC name (arg1, arg2, ...) RETURN expression

At first sight this might seem pretty unusable, but it is useful for very
simple functions and our add function in the previous section is a good
example. If you look closely at the original definition you’ll see that
the local variable s wasn’t really needed. Here’s the one-line definition
of add:

PROC add(x,y) IS x+y

1.4 Default Arguments

Default Arguments
=================

Sometimes a procedure (or function) will quite often be called with a
particular (constant) value for one of its parameters, and it might be
nice if you didn’t have to fill this value in all the time. Luckily, E
allows you to define default values for a procedure’s parameters when
you define the procedure. You can then just leave out that parameter when
you call the procedure and it will default to the value you defined for it.
Here’s a simple example:

PROC play(track=1)
WriteF(’Starting to play track \d\n’, track)
/* Rest of the code... */

ENDPROC

beginner 4 / 6

PROC main()
play(1) -> Start playing from track 1
play(6) -> Start playing from track 6
play() -> Start playing from track 1

ENDPROC

This is an outline of a program to control something like a CD player.
The play procedure has one parameter, track, which represents the first
track that should be played. Often, though, you just tell the CD player
to play, and don’t specify a particular track. In this case, play starts
from the first track. This is exactly what happens in the example above:
the track parameter has a default value of 1 defined for it (the =1 in the
definition of the play procedure), and the third call to play in main does
not specify a value for track, so the default value is used.

There are two constraints on the use of default arguments:

1. Any number of the parameters of a procedure may have default values
defined for them, although they may only be the right-most parameters.
This means that for a three parameter procedure, the second parameter
can have a default value only if the last parameter does as well, and
the first can have one only if both the others do. This should not
be a big problem because you can always reorder the parameters in the
procedure definition (and in all the places it has been called!).

The following examples show legal definitions of procedures with
default arguments:

PROC fred(x, y, z) IS x+y+z -> No defaults

PROC fred(x, y, z=1) IS x+y+z -> z defaults to 1

PROC fred(x, y=23, z=1) IS x+y+z -> y and z have defaults

PROC fred(x=9, y=23, z=1) IS x+y+z -> All have defaults

On the other hand, these definitions are all illegal:

PROC fred(x, y=23, z) IS x+y+z -> Illegal: no z default

PROC fred(x=9, y, z=1) IS x+y+z -> Illegal: no y default

2. When you call a procedure which has default arguments you can only
leave out the right-most parameters. This means that for a three
parameter procedure with all three parameters having default values,
you can leave out the second parameter in a call to this procedure
only if you also leave out the third parameter. The first parameter
may be left out only if both the others are, too.

The following example shows which parameters are considered defaults:

PROC fred(x, y=23, z=1)
WriteF(’x is \d, y is \d, z is \d\n’, x, y, z)

ENDPROC

PROC main()

beginner 5 / 6

fred(2, 3, 4) -> No defaults used
fred(2, 3) -> z defaults to 1
fred(2) -> y and z default
fred() -> Illegal: x has no default

ENDPROC

In this example, you cannot leave out the y parameter in a call to
fred without leaving out the z parameter as well. To make y have its
default value and z some value other than its default you need to
supply the y value explicitly in the call:

fred(2, 23, 9) -> Need to supply 23 for y

These constraints are necessary in order to make procedure calls
unambiguous. Consider a three-parameter procedure with default values for
two of the parameters. If it is called with only two parameters then,
without these constraints, it would not be clear which two parameters had
been supplied and which had not. If, however, the procedure were defined
and called according to these constraints, then it must be the third
parameter that needs to be defaulted (and the two parameters with default
values must be the last two).

1.5 Multiple Return Values

Multiple Return Values
======================

So far we’ve only seen functions which return only one value, since
this is something common to most programming languages. However, E allows
you to return up to three values from a function. To do this you list the
values separated by commas after the ENDPROC, RETURN or IS keyword, where
you would normally have specified only one value. A good example is a
function which manipulates a screen coordinate, which is a pair of values:
the x- and y-coordinates.

PROC movediag(x, y) IS x+8, y+4

All this function does is add 8 to the x-coordinate and 4 to the
y-coordinate. To get to the return values other than the first one you
must use a multiple-assignment statement:

PROC main()
DEF a, b
a, b:=movediag(10, 3)
/* Now a should be 10+8, and b should be 3+4 */
WriteF(’a is \d, b is \d\n’, a, b)

ENDPROC

a is assigned the first return value and b is assigned the second. You
don’t need to use all the return values from a function, so the assignment
in the example above could have assigned only to a (in which case it would
not be a multiple-assignment anymore). A multiple-assignment makes sense
only if the right-hand side is a function call, so don’t expect things
like the following example to set b properly:

beginner 6 / 6

a,b:=6+movediag(10,3) -> No obvious value for b

If you use a function with more than one return value in any other
expression (i.e., something which is not the right-hand side of an
assignment), then only the first return value is used. For this reason
the return values of a function have special names: the first return value
is called the regular value of the function, and the other values are
the optional values.

PROC main()
DEF a, b
/* The next two lines ignore the second return value */
a:=movediag(10, 3)
WriteF(’x-coord of movediag(21, 4) is \d\n’, movediag(21,4))

ENDPROC

	beginner
	Procedures and Functions
	Functions
	One-Line Functions
	Default Arguments
	Multiple Return Values

